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Abstract
The quantum spacetime and the phase space with fuzzy structure are
investigated as the possible quantization formalism. In this theory, the state of
the nonrelativistic particle m corresponds to the element of fuzzy ordered set
(Foset), i.e. the fuzzy point. Due to Foset partial (weak) ordering, the m space
coordinate x acquires principal uncertainty σx . It is shown that Schrödinger
formalism of quantum mechanics can be completely derived from consideration
of m evolution in fuzzy phase space with minimal number of axioms.

PACS numbers: 03.65.Ca, 02.10.Ab, 02.40.−k, 11.10.Cd

1. Introduction

Quantum spacetime and its relation to axiomatic of quantum mechanics (QM) and field theory
is now actively discussed from the different angles [1–3]. In particular, it was proposed that
the fundamental properties of spacetime metrics and topology can be modified significantly
at the Planck scale [4–6]. Our work is largely motivated by these ideas, which will be studied
in the framework of sets theory, exploring the various set structures of spacetime manifold
MST . For example, in one-dimensional Euclidean geometry, the elements of its manifold X,
the points xi constitute the ordered set. Yet there are other kinds of fundamental sets which
also permit us to construct the consistent geometries on them. In this paper we shall investigate
Posets and the fuzzy ordered sets (Fosets); in this case, their elements can be incomparable or
weakly ordered relative to each other [7, 8]. Based on Foset structure, novel (commutative)
fuzzy geometry was constructed during the 1960s and 1970s, it will be studied here as the
temptative spacetime and phase-space geometry [9–11].

In classical mechanics in the one-dimensional space X = R1 the Newtonian particle
is defined as ‘material’ point xm(t), ordered on R1 set, i.e. relative to all its elements {xa}.
Analogously to it, in our approach the massive particle corresponds to the fuzzy point bm(t)

in fuzzy space manifold CF . Due to its weak ordering, such a particle possesses the principal
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uncertainty of x coordinate, i.e. it is smeared in R1 space with an arbitrary dispersion σx [2]. In
such a theory the quantization by itself can be defined as the transition from the ordered phase
space to the fuzzy one, i.e. the quantum properties of particles and fields are induced directly by
fuzzy geometry of their phase space and not postulated separately from its geometric structure.
In this paper as the simple example of such a transition the quantization of the nonrelativistic
particle will be regarded; it will be shown that fuzzy geometry induces the particle’s dynamics
which is equivalent to Schrödinger QM dynamics.

Earlier it was shown that the fuzzy observables are the natural generalization of QM
observables [12]. In the last few years it was also found that some fuzzy set features are
also appropriate for quantum logics formalism ([13] and references therein). It is worth
mentioning here the extensive studies of quantization on noncommutative fuzzy spaces, both
finite (sphere, tori) and infinite ones; this formalism exploits the methods of modern algebraic
geometry [14, 15]. In these terms, we study the commutative fuzzy spaces; it turns out that
such an alternative depart from Euclidean ansatz also results into the simple and consistent
quantization. In section 2, we shall study the structure of particle’s states induced by fuzzy
geometry and discuss semiqualitatively the main features of their evolution. Based on these
considerations, in section 3 the evolution equations for a free particle and the particle in the
external field will be derived; it will be shown that they are equivalent to Schrödinger QM
formalism. The first results of our theory were published in [2].

2. Fuzzy geometry and fuzzy states

Now we shall consider the connection between fuzzy geometry and fuzzy mechanics (FM),
analogously to the connection between Euclidean geometry and classical mechanics. We shall
not review here fundamentals of fuzzy geometry, which can be found elsewhere [9, 10], and
consider only the simple examples important for our formalism. Recall that for elements of
the partially ordered set (Poset) D = {di}, besides the standard ordering relation between its
elements dk � dl (or vice versa), the incomparability relation dk � dl is also permitted. If it
is fulfilled, then both dk � dl and dl � dk propositions are false. To illustrate its meaning,
consider Poset DT = A∪B, which includes the subset of ‘incomparable’ elements B = {bj },
and the ordered subset A = {ai}. In A the elements’ indices grow correspondingly to their
ordering, so that ∀ i, ai � ai+1. Any bj is incomparable at least to one ai . Consider some
interval {al, al+n}, i.e. DT subset for which ∀ ai, bj , al � ai, bj � al+n; n � 2. Let us suppose
that some bj ∈ {al, al+n} and bj is incomparable with all {al, al+n} internal elements: bj � ai ,
iff l + 1 � i � l + n − 1. In this case, bj in some sense is ‘smeared’ inside {al, al+n} interval,
i.e. this is the discrete analogue of space coordinate uncertainty, if to regard A as the analogue
of coordinate axis.

Fuzzy relations can be considered as the generalization of regarded incomparability
relations which introduce the positive measure of incomparability w. To define it, let us put in
correspondence to each bj , ai pair of DT set the weight wj

i � 0 with the norm
∑

i w
j

i = 1. The
simplest example is the homogeneous incomparability: w

j

i = 1
n

for regarded ai ∈ [al, al+n]

interval; w
j

i = 0 outside it. It can be interpreted as bj homogeneous smearing inside [al, al+n].
If w is defined for all ai, bj pairs in DT , then DT is Foset DF , and bj are the fuzzy points [9].
The continuous one-dimensional Foset CF is defined analogously; CF = B ∪ X where B is
the same as above, X is the continuous ordered subset. If the constant metrics is defined on X,
then it is equivalent to R1 axis of real numbers. Fuzzy relations between bj , xa are described
by the continuous distribution wj(xa) � 0 with the norm

∫
wj dx = 1; in this case, CF is

2
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called the fuzzy space. Note that in fuzzy geometry wj(x) does not have any probabilistic
(stochastic) meaning but only the algebraic one [10].

The particle state in classical mechanics corresponds to the ordered point {�r(t), �p(t)}
in the six-dimensional Euclidean phase space R3 ∗ R3. In FM the nonrelativistic particle
m in one-dimension is described as the fuzzy point b(t) in CF manifold (its modification
for three-dimensions will be regarded in the final chapter). This means that the particle is
characterized by the positive density w(x, t) in the one-dimensional space R1 with constant
norm:

∫
w dx = 1. It does not exclude, naturally, the existence of other m degrees of freedom

on which its evolution can depend. In the nonrelativistic case, the time t is taken to be the
real parameter on the T-axis; the particle’s evolution in FM is assumed to be reversible. FM
supposedly possesses the invariance relative to the space and time shifts, also it is invariant
under the space and time reflections.

We suppose that m properties in an arbitrary reference frame (RF) are described by a fuzzy
state |g(t)}; the used notation stresses its difference from the Dirac quantum state |ψ〉. In the
regarded approach, it is natural to start by assuming that, besides w(x), other g independent
components are the real functions of one or more coordinates, i.e. are the fields:{

g1
i (x)

}
, i = 1, l1,

{
g2

j (x, x ′)
}
, j = 1, l2, . . . , etc,

where g1
1(x) = w(x). Here and below t is omitted wherever the dependence on it is obvious.

The structure of |g} states set Ms is not postulated; in particular, it is not assumed to be the linear
space of any kind a priori. In this framework, g evolution is supposedly described by the
first order on a time differential equation; it is expressed by the ‘fuzzy’ map |g(t)} = Û (t)|g0}
which will be studied in the next section. We shall construct FM as the minimal theory, i.e.
at every stage of its formulation it assumed that the number of |g} degrees of freedom and
theory free parameters is as minimal as necessary for the theory consistency. In general, the
FM formalism will be based mainly on geometric premises; in this vein, it is to some extent
analogous to formalism of general relativity. In this section, we shall try to find the temptative
|g} structure and some of its evolution properties from simple arguments prompted by fuzzy
geometry.

Analogously to QM, besides the pure fuzzy states, we shall use for the comparison also
the mixed fuzzy states gmix which are the probabilistic ensembles of several fuzzy states |gi}
presented with probabilities Pi [16]. It also supposed that an arbitrary m initial state |g0} can
be prepared by some experimental procedure. To study FM dynamics, it is sensible to start
from the simplest m initial states |g0}, which are point-like with w0(x) ∼ w0

1δ(x −x1) or some
combinations of them. In the minimal FM ansatz for point-like m initial state (source) its free
evolution results in m density:

w(x, t) = �w(x − x1, t)w
0
1

where �w is the w propagator. The simple example of such evolution gives the classical
diffusion [17]. In one-dimension for a point-like source in x = 0 one obtains

�D(x, t) = 1

2κ
√

πt
exp− x2

4κ2 t (1)

where κ is the diffusion constant. In this section �w = �D will be used in the toy model
illustrating the novel features of FM evolution; the detailed description of this model can be
found in [1]. Its use is instructive, because the main FM distinction from classical mechanics
lays in the correlations between g components at different x points and not in the evolution
of a point-like state. As will be shown below, in FM the exact effective �w solutions do not
differ principally from �D .

3
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This difference between FM and classical mechanics can be illustrated by the effect of
m sources smearing (SS) or indistinguishability which is the direct analogue of quantum
interference [18]. In its essence, depending on the fuzzy or classical structure of initial m state
(source), the w(x, t) form can differ dramatically, whereas x̄ will be practically the same. To
demonstrate this, let us consider one-dimensional analogue of notorious two-slit experiment
(TSE) of QM [16, 19]. We shall consider the system of ns = 2 point-like m sources (bins) with
Dx1,2 width cited in x1,2. Consider first the probabilistic mixture gmix

0 of g0
1,2 states localized

in Dx1,2, respectively. In this case, the weight w0
i = Pi where Pi is the probability for m to be

in Dxi ; the density of m sources is

w0(x) =
ns∑

w0
i δ(x − xi) (2)

over m ensemble (we consider the mixtures in which w0
1,2 are the same or do not differ much).

In each individual event m is emitted definitely by Dx1 or Dx2 at t0, therefore the gmix
0 algebraic

structure is described by the following proposition:

LP mix := m ∈ Dx1.or.m ∈ Dx2.

Consequently, the resulting m distribution over this ensemble at any t > t0 will be the additive
sum:

wmix(x, t) = w1(x, t) + w2(x, t) =
∑

w0
i �w(x − xi, t).

For SS illustration the most interesting is the case when w1,2(x, t) intersect largely, i.e. for
Lx = |x1 − x2| it should be Lx � σx(t) where σx(t) is w1,2 dispersion. For our toy model it
holds if Lx � κt

1
2 . The rate of w1, w2 overlap can be estimated as

Rw = 2
∫ √

w1w2 dx

and it should not be much less than 1.
Now consider the pure fuzzy state |g0} for which m coexists simultaneously in both bins

Dxi with the same weights w0
i ; more precisely, g0 is supposed to be the superposition of g0

i

states of the regarded mixed ensemble (exact FM definition of state’s superposition will be
given below). At this stage it is enough to admit that for such (pure) m state |g0} the following
proposition describes m source structure:

LP s := m � Dx1.and.m � Dx2

where m � Dxi means that m � xa; ∀ xa ∈ Dxi . In this case, LP mix and LP s are incompatible:

LP mix.and.LP s = ∅
The incompatibility of LP s, LP mix indicates that the signal of fuzzy source S cannot be
decomposed into the sum of signals from local sources Dx1,2. For such source’s system from
w(x) = wmix(x) follows LP mix = .true. with definiteness. Hence, if the resulting distribution
ws is to decompose as

ws(x) = wp(x) + kwwmix(x)

where wp � 0 is arbitrary, then it follows that kw = 0, i.e. any wmix content in ws is excluded.
If ws,wmix supports in X mainly coincide, such a kw value is possible only if ws oscillates
around wmix and at one or more points xj where wmix(xj ) �= 0 it gives ws(xj ) = 0. Simply
speaking, such a picture describes the interference patterns similar to those observed for QM
superposition. ws can be decomposed as

ws(x) = w1(x) + w2(x) + wn(x)

4
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where wn is the nonlinear term. For our toy model it can be expressed as

wn(x) ∼ 2 cos
[
rD

(
x − x1 + x2

2

)]
[w1(x)w2(x)]

1
2

where rD is arbitrary but rD  κ
√

t [1]. One should also define the SS measure, i.e. the
criteria of signals separation Rss for the evaluation of the smearing rate; depending on it Rss

can vary from 0 for gmix to 1 for the fuzzy state with maximal SS. The general Rss ansatz
is quite complicated [1], but Rss will be used in our formalism only in the asymptotic limits
when Rss → 0 or 1. In FM framework, the m free evolution SS effect should respond to
the maximal Rss value, because in FM no information about m path from the source |g0} at
all exists. Otherwise, it would mean that the additional information about m source (path) is
produced stochastically during m evolution, but it is impossible because of FM reversibility.

A similar SS effect should be expected for complete FM formalism; hence it is instructive
to exploit whether fuzzy geometry prompts some indications for the SS geometric scale
characterized by σx(t). By itself, fuzzy geometry does not contain any length parameters
which can be put in correspondence to σx . Actually, the fuzzy point bj described by wj(x)

possesses the obvious scaling properties for wj dispersion. From that it is quite natural to
expect that in the one-dimensional FM the influence of source gi

0 on the state |g(t)} at point x
is independent of |x − xi |. Hence minimal FM should also show the scaling behaviour, which
permit us to omit any length parameters settling σx(t) → ∞;∀ t . In the relativistic theory, the
dispersion σx(t) is restricted by the maximal velocity c, so that σx � ct . In the nonrelativistic
case, nothing forbids us from choosing the FM ansatz for the point-like source xi such that at
x → ±∞, lim w(x − xi, t) �= 0 (or the limits do not exist) [20]. This w(x − xi, t) property is
called the x-limit condition; in our toy model it is fulfilled only for t → ∞. Then w(x) should
be the Schwartz distribution (generalized function) [17]. Such |g} evolution first seems quite
exotic; recall yet that in QM the point-like initial state in one dimension evolves analogously
[19].

Consider now the system of ns = 2 sources with particular x1,2, w
0
1,2; each state g0

1,2
evolves into w1,2(x, t) which satisfies the x-limit condition. If |g0} is their superposition then
the resulting ws(x, t) should also satisfy this. x̄(t) and higher x-moments are undefined for
such ws(x) and in this case only the ws(x) form can depend on FM dynamics. In FM this
ws(x) should also correspond to the maximal SS, i.e. Rss → 1. Then w′

s(x, t) = ws(x +ax, t)

also corresponds to it for an arbitrary ax , because Rss depends on the ws form only. If Rss

maximality is the only condition of |g(t)} consistency, then w′
s can also be the solution for

some g0 state which is the superposition of g0
i . This conclusion is especially obvious if wi(x, t)

are practically independent of x; in our toy model it occurs for t → ∞. Hence the resulting
ax value should be defined by the initial |g0} state; these considerations evidence that besides
w(x), |g} includes at least one more degree of freedom. Since ax depends on |g} in both x1

and x2, it is sensible to assume that it can be represented as the correlation field g2
i (x1, x2)

introduced above. In minimal FM for the arbitrary state |g} it can be an arbitrary real function
of two variables g2

1 = Kf (x, x ′) which is continuous or has a finite number of breaking points.
Consequently, for the ns = 2 system ax is some function: ax = f f [Kf (x1, x2)]. If we choose
the gauge: ∀ xb,K

f (xb, xb) = 0, then regarding the fixed xc as the parameter we obtain

Kf (xd, xc) =
∫ xd

xc

∂Kf (ξ, xc)

∂ξ
dξ

and from that follows

Kf (xd, xe) = Kf (xd, xc) − Kf (xe, xc).

Therefore Kf is, in fact, the function of one observable: λ(x) = Kf (x, xc). Hence g can be
treated as the local field Eg(x) = {w(x), λ(x)}. One can transform it into the symmetric |g}

5
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representation by the complex function g(x) = w
1
2 (x) exp icλλ(x) where the cλ parameter will

be calculated below. In this case, w/g zero-equivalence holds: w(x) = 0 ⇔ g(x) = 0 and
the same is true for w, g limits at x → ∞. If the x-limit condition is fulfilled for w(x, t), then
it is also true for g(x, t) which should also be Schwartz distribution. Generally, one should
be careful with the interpretation of w(x, t) distributions as the measurable distributions of
physical parameters, yet in the discussion of QM foundations it is admissible to regard them
as the standard, normalized functions, as was demonstrated in [19]. This problem will be
reconsidered in detail below.

3. Particle’s evolution in fuzzy dynamics

From the previous discussion we deduced that in minimal FM the state of particle m in one-
dimensional space X is described by the normalized complex function g(x, t); for free m
evolution from the point-like source it satisfies the x-limit condition. In general, the g(x, t)

reversible evolution is described by the parameter-dependent unitary operator Û (t), so that
g(t) = Û (t)g0. It possesses the properties of group element:

U(t1 + t2) = U(t1)U(t2), ∀ t1,2.

Therefore m free evolution can be expressed as Û (t) = e−iĤ0t where Ĥ0 is an arbitrary constant
operator [18]. It is not supposed to be linear beforehand, but we start from the consideration of
linear H0; the obtained results will help us to analyse the nonlinear case. The free g evolution is
invariant relative to X shifts performed by the operator V̂ (a) = exp

(
a ∂

∂x

)
. Because of it, Û (t)

should commute with V̂ (a) for the arbitrary a. It is equivalent to the relation
[
Ĥ0,

∂
∂x

] = 0,
from which it follows that Ĥ0 in p representation is an arbitrary function of p: H0 = F0(p).

Consider now the initial point-like state |g0} inducing m density w0 = δ(x − x0); we put
in correspondence to it the unnormalized function g0(x) = exp(iα0)δ(x − x0) where α0 is an
arbitrary real number. The proper g0 normalization will be regarded below, at this stage it will
introduce the unnecessary complications but would not change g ansatz in an essential way.
Then from the δ(x − x0) Fourier transform ϕδ(p) = exp(ipx0) it follows that the g Fourier
transform is equal to

ϕ(p, t) = U(t) eiα0ϕδ = e−iF0(p)(t−t0)+ipx0+iα0

below x0 = 0, t0 = 0 is assumed. The transition δ(x) → g(x, t) develops continuously
without breaking points if g(x, tj ) constitutes δ-sequence, i.e. g(x, tj ) → δ(x) for any
sequence {tj } → +0 [17]. This condition is fulfilled only if g(x, t) has t = 0 pole, so
that g(x, t) can be decomposed as g = gsga where for the substitution z = x

f (t)
one obtains

gs(z, t) = 1

f (t)
eiγ (z),

with an arbitrary, complex γ ; f (t) → 0 at t → +0. ga is an arbitrary, nonsingular function
with ga(x, t) → 1 at t → +0, so it can be neglected in this limit. If in that case the asymptotic
relation ∫ ∞

−∞
g(z, t)f (t) dz → 1

is fulfilled, then under these conditions g(x, t) → δ(x) at t → +0. After z substitution g

Fourier transform ϕ can be alternatively represented as

ϕ′(p, t) = c0

∫ ∞

−∞
dz eiγ (z)+izpf (t) = exp−i[pf (t)] . (3)

6
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From the equivalence of ϕ(p, t) and ϕ′(p, t) one obtains the equation

ϕ(p, t) = e−iF0(p)t = exp−i[pf (t)]+αe (4)

from which follows F0(p) = ps

2m0
, f (t) = dr t

r , αe = 0, with rs = 1, where m0, dr are
arbitrary parameters. If H0 = F0(p) is regarded as m free Hamiltonian, then from its
symmetry properties and the energy positivity it follows that m0 > 0 and the consistent s
values are only the natural even numbers.

Let us consider first the case s = 2; it follows that the free Hamiltonian is H0 = p2

2m0
. For

the point-like state g0(x) = eiα0δ(x − x0) one obtains

ϕ(p, t) = e− ip2 t

2m0

which in x-representation results in

g(x, t) = G(x − x0, t) eiα0 =
√

m0

−i2πt
e

im0(x−x0)2

2t
+iα0 , (5)

hence for a positive m0 value G coincides with the QM free propagator for a particle with
mass m0 up to arbitrary constant [19]. If we assume that G is a FM free m propagator, then an
arbitrary normalized function describing the initial state g0(x) = √

w0(x) eiθ(x) will evolve as

g(x ′, t) =
∫

G(x ′ − x, t)g0(x) dx =
√

m0

−i2πt

∫
e

im0(x′−x)2

2t g0(x) dx (6)

which coincides with the free g0 evolution in QM formalism [19]. For such an evolution
ansatz one finds that the integral form

∫ |g(x, t)|2 dx is time independent and equal to 1; in
this case, w = |g|2 satisfies the m flow conservation equation. Note that for s = 2, g(x, t) �= 0
at x → ±∞, i.e. satisfies the x-limit condition, as minimal FM ansatz assumes. Yet it is
violated for free Hamiltonian with s � 4; in this case, the g(x, t) asymptotic can be calculated
[21] at x → ±∞:

g(x, t) � cg

t
1
s

(
t

1
s

x

) s−2
2(s−1)

expi s−1
s

m
1

2(s−1) t
− 1

2(s−1) x
s

2(s−1)

with cg an arbitrary constant. In particular, for s = 4, |g| ∼ 1

|x| 1
3

. Therefore g → 0 at x ± ∞,

so it contradicts the x-limit condition; hence this crucial assumption of minimal FM is violated
for s � 4.

Let us consider now the general case of FM free evolution, which does not demand, in
principle, that the Û (t) operator should be linear. However, m evolution is supposed to be
reversible, so Û (t) must be unitary. The thorough investigations of nonlinear Schrödinger-
type operators have shown that such physically nontrivial operators are nonunitary [22]. In
accordance with it, we shall demonstrate that the unitary free m evolution cannot be induced
by nonlinear Hamiltonian Ĥ0. Here we only sketch the proof leaving some mathematical
details for the future study. Consider an arbitrary m normalized state |g} in p-representation:

ϕ(p, t) = [wp(p, t)]
1
2 eiβ(p,t)

where β is real; it obeys the equation

−i
∂ϕ

∂t
= Ĥ0ϕ.

Since free H0 is invariant relative to the space shifts, then 〈pn〉 are constant ∀ n; from that it
follows that ∂wp

∂t
= 0. It transforms the latter equation into

∂β

∂t
ϕ = Ĥ0ϕ, (7)

7
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i.e. H0 action results in multiplication of ϕ on some function F(ϕ, p). H0 is the constant
operator, hence F cannot openly depend on t. The obvious solution is Ĥ0 = F(p), and it just
corresponds to the regarded linear ansatz with F = F0(p). The simple analysis shows that no
other physically interesting Ĥ0 solutions exist.

Now the normalization of g(x, t) states from point-like m sources will be considered; it
is also valid for QM formalism where this aspect is often missed [19]. This problem is quite
trivial, so in place of universal derivation we shall regard it for a particular δ-sequence. Plainly,
the state of the point-like source g0(x) should be the limit of physical normalized states of
very small width. Namely, it can be the sequence of initial states:

ησ = e
− x2

2σ2
x

π
1
4 σ

1
2

for σ → 0; the resulting function δη(x) = lim ησ (x) called the squire root of δ(x). ησ density
wσ (x) has the norm 1 and the limit δ(x), as expected for the state of point-like source. Hence
it seems consistent to choose g0(x) = eiα0δη(x) as the point-like state in FM (and QM also).
Its Fourier transform

ϕη(p, t) = lim
σ→0

σ
1
2

(2π)
1
4

eiα0−i p2 t

2m0
−2σ 2p2

also has the norm 1 at any t. ϕ describes the normalized constant distribution of m density
on the p axis. If to substitute such g0 into (6), the resulting g(x ′, t) will have norm 1 at any
t. It stresses that the propagator G is not the physical state of particle m. However, all FM
results obtained above do not depend on this renormalization and stay unchanged, because
such renormalization is, in fact, the multiplication of g0(x) and g(x, t) on the infinitesimal
constant.

Now Hamilton formalism for FM can be formulated consistently. In our theory m
momentum is the operator p̂ = −i ∂

∂x
[16] in x representation and the free Hamiltonian

Ĥ0 = p̂2

2m0
. In FM the natural U(t) generalization for the m potential interactions Vm(x) is

Ĥ = Ĥ0 +Vm(x). From obtained relations it results in Schrödinger equation for g; the general
path integral ansatz for g can be obtained by means of Lagrangian L derived from Ĥ for the
given Vm(x) [19]. Any normalized function g(x) admits the orthogonal decomposition on
|xa〉 = δ(x−xa), and the |xa〉 set constitutes the complete system [18]. Therefore |g} set Ms is
equivalent to the complex rigged Hilbert space H with the scalar product g1 ∗g2 = ∫

g∗
1g2 dx.

Consequently, our theory does not need superposition principle as the independent axiom, it
follows from other FM axioms. In FM x is an m observable and it is sensible to suppose
that p̂ and any Hermitian operator function Q̂(x, p) are also m observable. For any such Q
there is the corresponding complete system of orthogonal eigenvectors |qa〉 in H. It is allowed
to assume that for FM measurements of observables QM reduction (projection) postulate for
an arbitrary observable Q can be incorporated in FM copiously [16]. Generalization of FM
formalism on three dimensions is straightforward, the only novelty is that |g} correlation
between two points �r1,2 defined in the previous section:

Kf (�r1, �r2) =
∫

l

∂Kf (�r, �r2)

∂�r d�l
is supposed to be independent (up to 2πn) of the path l over which it is calculated. In this
case, the |g} quantum phase α(�r) is defined unambiguously.

It turns out that the obtained Û (t) ansatz coincides with the QM Schrödinger evolution
operator for free m evolution. The analogous results for QM are obtained in the theory of the
irreducible representations, but in that case they are based on more complicated axiomatic;
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in particular, it includes the axiom of Galilean invariance [16]. In distinction, FM does not
assume Galilean invariance of g states in different RFs but only the invariance relative to the
space and time shifts. It acknowledged in quantum physics that the classical massive objects,
including physical RFs, can be regarded as the quantum objects in the limit m0 → ∞ [16].
If such an approach is correct in the FM framework also, then regarding m with m0 → ∞
as RF, Galilean transformations can be derived from the obtained FM ansatz for H0. Of
course, this hypothesis needs further investigation, but in this approach it seems consistent.
Note that Planck constant h̄ = 1 in our FM ansatz, analogously to relativistic QM alike; in
the FM framework, it only relates x, p scales in our formalism and does not have any other
meaning [19]. The proposed FM considers the nonrelativistic particle for which x is the fuzzy
coordinate, yet from the symmetry of phase space one can choose any observable Q as the
fundamental fuzzy coordinate and from this assumption to reconstruct FM formalism. It can
be especially important in the relativistic case where x cannot be the proper observable [16].
In addition, the linearity of state evolution becomes the important criterion for the choice of
consistent ansatz. For a massive particle the minimal solution is 4-spinor, i.e. its evolution is
described by the Dirac equation for spin- 1

2 [16].
In conclusion, we have shown that the quantization of elementary systems can be derived

directly from axiomatic of sets theory and topology together with the natural assumptions
about systems evolution. For example, in commutative fuzzy space CF the resulting x, p

noncommutativity is induced by minimal properties of m evolution, first of all, its invariance
relative to time shifts. Note that FM quantization does not need the corresponding classical
system as the starting point [15]. Copenhagen QM interpretation claims that QM cannot be
formulated consistently without the preliminarily postulated classical notions, but it seems
that FM formalism is, at least, essentially less connected with them. Thereon, it allows us
to suppose that the quantization phenomenon has its roots in foundations of mathematic and
logics [16]. The FM approach, in principle, can be extended on quite different physical
systems. Here we considered only the fuzzy phase space of single particle, but such phase
space of any kind can be constructed. In particular, it can be the Fock space for the secondary
quantization, in this case; the occupation numbers for particle’s states Nc(�p) can be regarded
as the fuzzy values. Yet the main target of FM, as well as of other studies of fuzzy spaces,
is the construction of nonlocal QFT (or other more general theory) [15]. In this vein, FM
provides the interesting opportunities, being generically nonlocal theory which, in the same
time, is Lorentz covariant. It can help to reformulate some old methods of nonlocal QFT, in
particular, the formalism of nonlocal ghost fields [23]. If such theoretical development will
be successful, it can change in an essential way the description of some fundamental effects,
in particular, of vacuum fluctuations and particle’s self-energy [5, 23].
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